PHYSICAL REVIEW E VOLUME 61, NUMBER 4 APRIL 2000
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A time-explicit formula that describes the time evolution of velocity distribution functions of gases and
plasmas is derived from the Boltzmann equation. The formula can be used to construct collision simulation
algorithms. Specialization of the formula to the case of the Coulomb interaction shows that the previous
method[K. Nanbu, Phys. Rev. B5, 4642(1997] for a Coulomb collision simulation is a solution method of
the Landau-Fokker-Planck equation in the limit of a small time step. Also, a collision simulation algorithm for
multicomponent plasmas is proposed based on the time-explicit formula derived.

PACS numbds): 02.70.Lq, 52.65-y, 51.10+y, 05.10.Gg

[. INTRODUCTION On the other hand, many articles have been published on
methods of simulating Coulomb collisions on the basis of
intuitive physical considerations. Some authors of these
) i X works attempted to show the consistency of their method
efied gases with short-range intermolecular forces. Blfld \yith the Fokker-Planck equation. We cannot state, however,
developed the particle simulation meth@dSMC) for rar-  ht these methods are derived from the Fokker-Planck equa-
efied gases by using the fundamental properties of gases sughn. A representative selection of the published papers are
as the mean free path and the collision frequency. Althougheferred to here. Takizuka and Alj20] proposed a binary
the method reflects many of the ideas and concepts employe@llision model that mimics the Fokker-Planck operator with
in the derivation of the Boltzmann equation, it was regardedhe Landau form. Wanet al. [11] improved Takizuka and
as a method for numerical experiments. After Bird’s work, Abé's method, clarifying the relation between the proposed
one of the present authofg] derived a particle simulation collision operator and the Fokker-Planck operator of the
method from the Bolzmann equation and clarified the theotandau form. Jonest al. [12] presented a method to calcu-
retical background of Bird's methofB]. A comprehensive late the force acting on a particle from grid quantities in the
review of rigorous mathematical results on simulation meth-particle-in-cell codes. Their method was improved by Man-
ods for the Boltzmann equation can be found in the book oheimer, Lampe, and Joydd3] who introduced a weaker
Cercignani, lliner, and Pulvirenfd]. One can also mention condition for the velocity distribution function.
many alternative numerical methods. For brevity, we refer In Coulomb collisions, small-angle collisions are much
only to two recently developed methods; one based on theore important than collisions resulting in large velocity
fast Fourier transforni5] and the other based on Wild's changes. It is this idea that Rosenbluth, MacDonald, and
sums[6]. Both methods are very interesting from a theoret-Judd[14] used to derive the Fokker-Planck equation from
ical point of view. However, the practical computational ef- the Boltzmann equation. However, simulating small-angle
ficiency in the case when the methods are applied to spatiallgollisions one by one is computationally inefficient. Cranfill,
inhomogeneous problems still appears to be much lower thaBrackbill, and Goldmafl15] used the idea of grouping many
the efficiency of the Bird-type schemes. Just for this reasonsmall-angle collisions and succeeded in using a larger time
we here restrict our considerationttaditional Monte Carlo  step. One of the present authdis6,17 proposed a quite
methods used in kinetic theory. different formulation on a cumulative property of Coulomb
It is still unclear how to generalize the above methods tacollisions; the nature of his formulation yields a drastic de-
the case of long-range forces, in particular, to the Coulomlzrease in computational effort in the particle simulation of
interaction. In this paper, the long-range forces are defined aoulomb collisions. However, the unique simulation method
the particle interaction for which the total collision cross sec{16] was proposed on the basis of physical considerations,
tion diverges within the framework of classical mechanics.without the use of any kinetic equation. Which equation does
We consider the Boltzmann equation for long-range forceshis method really solve? This is one of the questions we will
and the Landau-Fokker-Planck equation from a unified poinattempt to answer. The aim of the present paper is to present
of view. Numerical methods based on a finite differencea unified treatment of rarefied gases with long-range forces
form of the latter equation were studied long agee, for and plasmas on the basis of classical kinetic equations and to
example, Refs[7] and[8]). It is very difficult, however, to  construct an efficient Monte Carlo collision algorithm for
apply such methods to spatially inhomogeneous problemsolving the kinetic equations. We should stress that some
The same is true for methods based on the Langevin equideas of Ref[16] were a starting point for the present paper.
tion since the computational task increases roughly in pro- The numerical schemes for kinetic equations are usually
portion to the square of the number of simulated particledbased on the splitting algorithm, namely, the collision pro-
[9]. cess is treated separately from the motion of particles with-

It is well known that there are very efficient schemes for
the Monte Carlo simulation of collisional processes in rar-
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out collisions. The problem of the collision process is to 1
solve a spatially homogeneous kinetic equation. Given our =0 fdef(W)|V—W| : 5
goals, it is therefore sufficient to consider only the spatially 0 R

homogeneous case. here th - be obtained b ina th
The paper is organized as follows. In Sec. Il we discusg/ere the a_tverage ) overv may beé obtained by using the
the problem in detail. Then we introduce an important ap_correspondlng Maxwellian distribution. Equatié®) is, in a

proximation to the Boltzmann equations for a simple gassense, a key point of any sort of DSMC method for Eq.

(Sec. Il and mixturegSec. IV). The limiting case of small- In_DSMC methods we si_mulate binary collisions, ke_eping @n
angle scattering (the Landau-Fokker-Planck equation mln_d that_ roughly speaking, the total number of collisions in
[18,19) is considered in Sec. V, where a time-explicit ki- a given time interval corresponds to E@). The methods

netic equation for multicomponent plasmas is derived. Thié)bv'c_JUSIy fail if Rima=c° (long-range potenUa]ssm_c_e o
equation having first order accuracy in time step is similar in.:(.) n Eqg. (5)'. and thgrefor_e th_e number of collisions is
its Monte Carlo realization to the one used in Rgge].  Ninitely large in any given time interval. .
Some simplified schemes are constructed in Sec. VI, where On the other hand, t_he initial data proplem for &) is
we also show that the scheme of Rf6] is really a method well posed for a certain clais of potentials W%ﬁxzm;

of solving the Landau-Fokker-Planck equation and that thi yp_lcal examples ar®/(r)e1i (_n_>1) or V(r)oce_ I, a
scheme can be significantly simplified. In Sec. VIl we deriveP€iNd & constant. In such cases,in Eq. (4) loses its mean-
a collision algorithm for mixtures using the formulation in "9 although a typical relaxation time is still well defined,
Sec. V. A weight alogrithm is described in Sec. VIII, which S&> 8

is useful in simulating multicharged plasmas.

1
—=< J dwf(W)Ucrtr(U)> (6)
Il. STATEMENT OF THE PROBLEM 71 RS

Let f(v,t) be a distribution function satisfying the spa-

. ) with u=|v—w|. The physical reason for the solvability of
tially homogeneous Boltzmann equation: | | Phy y

Eqg. (1) for long-range potentials is now very clear: An infi-
of u-n nite number of small-angle collisions yields a finite contri-
E:f . 2dwdng(u,T [f(v)f(w')—f(v)f(w)], bution in the relaxation process. How can we simulate this
R3xS 1 process by DSMC methods? The simplest method is to in-
@ troduce a radial cutoff of the potenti®l(r) [or angular cut-
where v is the particle velocity,t is the time, R® is  Off of the cross sectiomr(u,6) at a small anglp We thus

3-dimensional Euclidean spac® is a unit sphere i3, u  obtain an approximate form of E¢4) with avery largeo
=v-w, u=|u|, ne < i.e.|n|=1, and but we can use the standard DSMC method for @y. This

approach is, however, rather inefficient since we need to
choose the time stet which satisfies the conditiorht
<79=0(0), whereas the true relaxation timg of Eq. (6)
2) satisfies the inequality;> 5. Another method to avoid the
g(u,cosf)=uo(u,0), (0<6<m). divergence ofo, is to regardo(u, #) as isotropic, i.e., in-
dependent off. This results in the variable hard-sphere
Here co=u-n/u and o(u,0) is the differential collision model[20]. This model is very successful from the engineer-
cross section at the scattering angleThe argument is  ing point of view, but some arbitrariness remains when de-
omitted in the distribution functions in E@1). termining the constant in the model; one may use viscoscity,
We introduce also usual notations for integral cross secthermal conductivity, or self-diffusion coefficients.
tions All these considerations remain valid also for the Landau-
Fokker-Planck equation for plasm@s8,19], which is simply
at0t=27rfwdea(u,6)sin 0, an asymptotic form of the Boltzmann equati¢h for the
0 Debye potentiaV(r)<e™*'/r in the limit of a—0.

3 We now ask: How can we construct an efficient DSMC
method for long-range potentials? We attempt to construct a
method satisfying the following minimal requirements.

(a) The computational task should be proportional to the
and note thatr,=7R2,,, for intermolecular potentials with a number of simulated particles.

1 1
v’=§(v+w+un), W’=§(v+w—un),

oy(U)= 277J'7Td00(u, 0)sin6(1—cosh),
0

finite radiusRqy Of action. For exampleR,.,=d for hard (b) The time step of order, of Eq. (6), not r, of Eq. (5),
spheres of diametat. We distinguish two alternative cases: should be allowed.
(i) short-range potentialsR{,,,<>°) and (ii) long-range po- (c) The simulation method should be similar in realization
tentials Rya=2). In the first case we can rewrite Eq) as  to some of the existing DSMC methods for the Boltzmann
equation.
of B (d) The method should be generalizable to the Landau-

=1 l7:f(V)UtOtfRade(WHV_WL 4 Fokker-Planck equation and to multicomponent gases and

plasmas.
and define a typical time intervat between two successive Of course, requiremerit) is not always necessary but it
collisions (relaxation time by is very convenient in practical use. We now derive the

i
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DSMC method satisfying all the above requirements. This ighan any other first ordeiin At) approximation of Eq(1).
the main purpose of the present paper. First we explain a kejJhe reason why this equation is useful for long-range poten-

idea in the following section. tials is that the exponential operator exf)(has much better
properties than the operatditself. We shall see this below.
IIl. FIRST ORDER EQUATION The operatod in Eq. (10) is well known in linear trans-

, ) o port theory[21]. To construct the operator exg}, it is suf-
We c0n5|der the Boltzmann equati@h) and rewrite it in  fiient to solve the initial value problem fak(w,7) as
the following form:
Iy

T — 2
ﬁ:f AWIF(U.L). @ 2=, W0 =yo(w), (0cS), (19
ot R3

) for arbitrary ¢o(w). We assume
where U= (v+w)/2 denotes the center-of-mass velocity,

=v—w is the relative velocity, and 2 2
”lf/IO”LZ(SZ): Szdwlﬂo(w)<°°,

u u
F(U,uy=f| U+ > f(U— 5) =f(v)f(w). ®  then we have
0 |
The operatod acts only on the angular variabte=u/u in
such a way that "//0(‘"):20 m:z_| Vim Yim( ),

JF(U,uw)= f 2dl’lg(u,m- n)[F(U,un)—F(U,uw)].
S
C)

We note thatJ andu play only the role of constant param-
eters in Eq(9); one can define the action of the operaian
arbitrary functiony/(w) by

Yim = Jszdw%(w)vrm(w),

whereY|(w) are the spherical function and;,(e) is its
complex conjugate. Using the additional theorem for the
spherical function, we can easily prove

1
Juo)= [_dng mism-pt@). a0 M= N¥im, =27 [ dug[1-Pi(]

° (16)
where we omitted the irrelevant argumenin the scattering
indicatrix g(u, - n). Let us approximate the time derivative
and the operatad in Eq. (7) by

Therefore, the solution of Eq15) reads as

0 |
- (0) _
VD TV A)—f(v0) Won=2 2 din eXp=N7)Yin(e).

ot At

1 .
1 ‘]: _[exqe‘])_l]a
€ (11) It is more convenient to express the solution in the following
integral form:
wherel is the identity operator, andit ande are assumed to
be sufficiently small. Then the approximate equation reads as  (w, 7) =exp( ) o w) = f ,dnG(w-n,7)g(n),
S

At R a7
f(v,t+At)—f(v,t)=—J’ dwlexp(ed)—1]F(U,u).
e JRr® where
(12
: - 1
Let us write Glu,m) =2 —g—exp—N7Pi(p), (—1=p=1),
=0
(18)
e=pAt, p=f 3dvf(v,t)=const, (13
R andP,(w) is the Legendre polynomial. We note that
wherep is the number density. Then we obtain the approxi- 1
mate equation lim G(u,7)==—48(1—pw). (19
7—0+ 2m
1
f(v,t+At)= 0 fdeW exp(pAtd)F(U,u) A remark is here necessary: It follows from H@6) that
1 ) 1
=;j JdwexppAtd)f(v,Hf(w,b). (14 |“m >\|=27Tf 1dMg(/-L)=uo'tota (20
R — 00 -

This equation approximates the Boltzmann equati@h  provided thatg(u)[=g(u,u)] is given by Eq.(2). There-
within an accuracy 0©(At), so that it is not formally worse fore g(u,u) is nonintegrable inw e (—1,1) for long-range
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potentials, whereas the functi@(u, 7), whose parameter 1

is irrelevant, is even square integrable in this interval in typi- f(v,t+At)= —f 3dW[ f(v,t)f(w,t)exp( —UuopAt)
cal cases. In this sense, it was mentioned above that&xp( PR

has better mathematical properties tharitrue, however, +[1—exp —UopAt)]

only for positive 7).

Let us now present the first order equatid#d) in a time- u-n , ,
explicit form. Using Egs(17) and (18) we obtain X denR u U pALITVOTW,
1 u-n (26)
f(v,tJrAt):—f3 L dwdnG| ——,u,pAt | f(v",t) f(w',1),
p JR3xs u 21) It is easy to show thaR(u,u,7)=0 and
1
where F(U,un)=f(v',t)f(w’,t) is used. The kernel 27-rj duR(w,u,7)=1. (27)
-1

G(u,u,7) is given by

o 1 The probabilistic meaning of E¢26) is obvious: The colli-
G(u,u,7)= 2 ——P(wexd — N7, (22 sion between particles with velociti#sandw occurs with a

<o 4w probability of P y(At) =1—exp(—uo,pAt), and the post-
collisional velocities are distributed in accordance with indi-
catrix R(u,u,pAt). [Note thatR= (44) ~ ! for a hard-sphere
molecule] The simulation method for short-range forces
based on Eq(26) has some advantages compared with the
We note that for a fixegpAt the right-hand side of Eq21)  standard schemg4]; in practical realization of collision
coincides formally with the gaifpositive term of the colli-  simulations, we do not need to introduce an uncertain quan-
sion integral in Egq. (1), having a collisional kernel tity such as the maximum relative speed. It is also sufficient
G(u,u,pAt). The functionG(-) is non-negative; it is the to decide whether a collision occurs or not by using the prob-

1
M(U)=2wﬁldug(u,m[l—P.(M)]. (23

Green function of Eq(10), and moreover ability P.y(At) for each random collision pair with veloci-
ties (v,w). The price we need to pay for this simplification is
f dnG(w-n,u,pAt)=1. (24) the calculation of the fUﬂCtIOIR(/.{,,LI,T) fpr a given inter-
? molecular potential. However, this function has to be calcu-

] ) o lated only once; moreoveR is unity in the practically most
Therefore, the first order equati¢dl) guarantees positivity jnportant case of a hard sphere. Our main concern in this

of f(V,t"l‘At) for f(V,t)?o and fulfillment of all classical paper is the |0ng_range forces' and hence' we now leave the
conservation laws. It is now clear that the Nanbu—Babovsk)ghort_range forces.

particle method 4] can be used for simulation of Eq1) In the next section we generalize the methodology to the
with almost no changes. It is remarkable that B{) corre-  c5se of mixtures.
sponds to theconstant collision frequencyThat is, colli-
sional pairs in numerical realization can be chosen randomly,
so that the realization is very simple.

For the sake of generality, we also present the form of Eq. We consider am-component mixture of rarefied gases.
(21) for the case of short-range forces. Since We denote the distribution function of speciedy f,(v,t).

The reduced mass far— B collision is

IV. EQUATIONS FOR MIXTURES

MmN\ (U)=Uuo<e,
|—o M,g=m,Mg/(M,+mg) (a,8=1.2,...n). (28

Eq. (23) can be transformed into the following form: Let o, 5(u, 0) be the corresponding differential cross section,
u standing for relative speed. Then the Boltzmann equations

1 g ; o O\
G(p,u,7) = 2—5(1—M)8XI0(—U0totT) can be written in a form similar to Eq$7)—(9):

a
af (V1) <
+[1_exq_UUtotT)]R(/.L,U,T), ot :BZI fR3dWJaﬁFaﬁ(Uaﬁvu)v (29)
where
whereu=v—w, U,z=(m,v+mgw)/(m,+mg), and
o 2+1 exdg(u)r]—1 m m
ROt =2 P g1 29 Faﬁwaﬁ,u):fa(umm—“B“)fﬁ(Uaﬁ— m“ﬁ“)
and =fa(V)f5(w),
1
_ u-n
9|(U)—27rf_ld,u9(u,M)P|(M)- JaﬁFaﬁ(Uaﬁ,u):dengaﬁ(u,T)[FQB(Uaﬁ,un)

The corresponding transformation of Eg1) yields —Fap(Uyp,u)], (30
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with g, (U, cosb)=uoz(U,6). In case of a simple gas, E¢33) reduces to Eq(21). All

It is obvious that one can easily repeat all steps of Sec. llarguments at the end of Sec. Il can be obviously generalized
and obtain an equation similar to E@1). It is, however, to the case of mixtures. As will be shown later, arbitrariness
convenient to take into account the fact that a typical colli-in the choice of(u,z) in Eq. (31) plays no essential role
sion time, 7,5, depends strongly on the species of colliding because nothing in E¢33) depends ofu,) (through )
particles. We therefore introduce for small At.

1
3 :Zﬂ,f d U g, 1— ), 31 V. SMALL-ANGLE SCATTERING AND COULOMB
gaﬁ B Mgaﬁ(< a,8> Iu’)( M) ( ) INTERACTION

where(u,) is a typical relative speed between particles of We first consider Eq(21) for a simple gas and assume
speciese and 8. Now we rewrite Eq(29) as that the scattering cross se_ctmﬁu,e) is concent_rat_ed at
small angles nea®=0. This means that the indicatrix

g(u,u) of Eq. (2) is concentrated neai=1. We can thus

of - A 1 . ; .
e a = formally approximate the integral in ER3) as
o ﬂ; gaﬁfdewJaﬁFaﬁ, Jup @B‘]aﬁ' y app g ®3
1
We again use the approximations M(U):Zﬁf_ldﬂg(u#)[l—P|(1)+(1—M)P|'(1)]
of,  f vt+AD—f (vt . 1 . 1
o At : Jaﬁzs—a[exmsa%ﬂ)—l], =7T|(|+1)f_1dﬂg(u,ﬂ)(1—m, (36)

and put whereP| (1)=1(I1+1)/2 is used. This yields the approximate

n expression of the Green functid®(u,u,r) of Eq. (22):

=At2, g, = | .dvf (v,t)=const.
cam A2 Tupy Py Ls AV Gl,u, ) =G (,u,7)

This yields < 2+1 RN
_|:O At P|(,LL)eX 2 U(Ttr(U)T,
n
fa(VitHAD = D 7o f JAwlexp(e Jap) fa(v,Df sw,1), (37)
B=1 R
where o(u) is defined by Eq.(3). The superscript in
where G®)(-) means that Eq21) with the kernel replaced bg(")
approximates the Landau-Fokker-Planck equalti®)19,
n -1 n
Waﬁzaaﬁ< Zl ga'ypy) ’ 'BZ]- Waﬁpﬁzl (32) of . 19 2
Y E—gé’—vl R3dWU0'tr(U)(U 5ij—Uin)
Finally, we express the operator exponentials in a time-
explicit form analogous to Eq21) and obtain (—— — | f(v)f(w). (38)
n
f (V,t+A)= D Tap dwdnGaﬂ(E,u, At ) For a formal proof of this statement it is enough to note that
p=1 R3x 52 u Tap
' / J
XF (Vo D g(Wop 1), (33 ;{2 e — Uoy(U)(U?8; — uju; ) zﬁ(u)
whereu=v—w and u-n
=f2dnG<L>(—,u,T) (un), (39
m, v+ MgW  Mag . MVAEMeW M, S u
wB= un, w, ,
Fomgtmg om, Fomgtmg mg a4 @nd repeat all steps in Sec. Il for E(88). The procedure
(34) can be immediately generalized to mixtures: We need only
. replaceG,,; in Eq. (33) by GYJ, which is given by Eq(37)
Gup(pnt ) =S 2|+1 after replacingo(u) by

1 r(u)=2 fwde 25(U,0)sind(1—cosh). (40
><exp[—27-rrf dg () T op(U) =2 . Tap(U, 0)sing( ). (40
-1

Let us now consider the most important case of the Cou-
X[1— P|(,u)]}. (35  lomb potential,
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Vop(1)= gose, (af=12....7)

wherer is the distance between two particles with charges

d, andqg, andeg is the permittivity of free space. By the
use of the Rutherford formula

2
qaqﬁ’ - —2
4we0maﬁu2) (1—cos#) ™,

Uaﬁ(uie):(

the integral of Eq(40) with angle cutoff atd= 0”‘2‘ results in

2
qan
47Teomaﬁu2) N Aag

O'gﬁ(u)2477(

where the standard approximation

6min
sin—£

In 5

=In A ,z= const

is used. The Coulomb logarithm Iy, is defined in the
usual way. The scattering angle is given by tang/2)

|qaq5|/47-reoma u?b, whereb is the impact parameter. Set
0= 075 atu®=(u;,) andb=X\p, where\;, is chosen to be
the Debye Iength independent of species a:;@B) is the
average ol for a— B collisions. Then we have

A :47T€0maﬁ<uiﬁ>)\[)
“* |90l
We choosgu? ) as
3kT,

2= KT 3Ty~ g
apf m,B @ B

a

This value was evaluated by assuming the Maxwellian dis-

tributions for speciesx and B, where T, and T4 are the
temperatures, an@/,) and(vy) are the row velocities. Note
that A, g=Ag,. If T,=Tz=T and(v,)=(Vg), then(u? B
=3kT/m,; and hence,Aaﬁ—127750)\DkT/|qaqﬁ| In the
case oflq,|=|qs|=e, this A,z is the constant independent
of species. For the sake of simplicity, here we set thé Jn
constant for anyr and 8 and insertA ;= A. However, the
extension to the case when I depends on species is
straightforward.

We now formulate the final results for multicomponent
plasma. The time evolution of speciasis described in the
time-explicit form

n
f(Vt+A) =D o dwdnD,,4
=1 3% g2

u-n At , ,
T iAaﬁF fuz(vaﬁ !t)fﬁ(waﬁ ’t)v

(41)

X

whereu=v—w, v, ; andw,, are defined by Eq:34), and
2

<ua,8>3 aquy:|l
Ugy)mZ 03]
Uay ayAp

n

=| 2, Py
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2 2
Anp= W(M) InA, 42)
Waﬁ 47T€0maﬁ
o o21+1
Dup(p,m) =2 — = Pilwexd —1(1+1)7]. (43

The simplest estimate @i, z) can be obtained by assuming
an equilibrium plasma with temperatufe
(Unp)=(8KT/TM, 5) "2, (44)

k being the Boltzmann constant. By use of Ey), the final

form of 7,z reads as
n -1
qQ /m
E P2 4 B} .
az

In the simplest case of charge-neutral hydrogen plasma con-
sisting of electrons¢=¢) and protons ¢=i), we obtain

aﬁ (45)

Me

Pe:Pi(Zp), m;; = mee=7, Mje=Mej=Me,

m;
?l

2 1 -1
qe( € ) 7T|| 1+— Tie :P(l"")’):

2m
=p(1+v2), ==,

-1
7Tee Tej

1
1+—
V2

4

e 4
m2 INA, Aeg=2mp(1l+y)

e
2InA

1
Aii:87Tp(1+ y

1 e4 4
1+—
V2 my

2 InA.
(46)

Ace=8mp —InA, Ag=2mp(1+Vv2)

These equations give all coefficients in E41) for a=i or
e. It should be noted, however, that any other reasonable
choice ofm 4 satisfying the conditions

n

521 Tappp=1, (a=1,2,...1), 47)

is also allowable.

VI. SIMPLIFIED SCHEMES AND COMPARISON WITH
THE PREVIOUS APPROACH

In this section, we discuss a possible way of simplifying
Eq. (43). A disadvantage of the numerical scheme based on
Egs. (41)—(43) is that the probability density function
D(u,7) is rather complicate(suffix a8 is omitted. At each
time step one needs to obtain a random sample of the quan-
tity w(7) distributed in[—1,1]. It is therefore desirable to
deal with a simpler functiorD, («,7) approximating Eqg.
(43). For this purpose, we first note that Eg1) is correct
only with an accuracy 0O(At), as is clear from its deriva-
tion. Hence, the functio43) can be replaced by any other
functionD, (u,7) satisfying the following conditions:
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1 1 (1 1-—u
(@ Dy(u,7)=0, 2w | duD,(u,7)=1, (4838 —zf du[1=P\(n)]lexp — ——
-1 27’ -1 27'
1 (s
1 =— dxe [1-P;(1—2x7)]
(b) lim D, (p,7)= 5= 6(1—p), (48b) 0
7—0 2m U
=1lim2P{(1) | dxxe*
7—0 0
2w (1
(¢ lim— 1dM[D* (m,7)=D(u,7)]P (1) =0. =2P/(1)=I(1+1).
7—0 -
(480 Hence, all conditiong48a—(480 are fulfilled. Therefore,
the scheme presented in REE6] approximates the Landau-
Equation(48c must hold for alll=1,2, ... . Webegin with  Fokker-Planck equation. Let us further develop our idea. To

two remarks.

Remark 1 Replacing the kernel by its first order approxi-
mation is allowable not only in Ed41) for plasmas but also
in Eq. (33) for general long-range forces, provided that con-
ditions (489—(48¢ are satisfied by replacin®(u,7) by
Gap(m,u,7) andD, (u,7) by G} 4(u,u,7), which is an ap-
proximation ofG,z(u,u, 7). As we stressed in the Introduc-

tion, the starting point for the present paper is the method

proposed in Ref{16] on the basis of intuitive physical con-

approximateD (u,7) we need not always solve EO) for
A(7); it is enough if only condition(48¢) is satisfied. To do
this one can use the following simple lemma.

Lemma Conditions(483—(48¢) are fulfilled for any func-

tion
i
2T

-1

17
D*(,U,,T)=¢( 4777'[0 dxi(x)

siderations. We are now able to show that the approach ovherey(x) satisfiesy(x)=0 for x>0 and

Ref.[16] is really the solution method of the Landau-Fokker-
Planck equation in the limit cht— 0. Roughly speaking, the
previous methodl16] is equivalent to a numerical realization
of the Markov process of Eq41) (we ignore an irrelevant
choice of 7,5 and some other detajlswhere D(u,7) is
approximated by the function

Dy (1) = g —inna EXPKA), (49

with A=A(r) satisfying the equation
hA Lo 50
cothA— K—e . (50

Remark 2To completely clarify the comparison with Ref.
[16], it should be noted that the functidd, (cosyy.s5/2)
corresponds td(yy) for fixed parametes in the notations
of Ref. [16]. It is sufficient for our purpose to show that
function (49) does satisfy condition&8a—(48c). The limit
7—0 corresponds to the limitA—«; moreover, A(7)
=(27)"! as 7—0 in accordance with Eq50). Therefore,
conditions(48a and(48b) are obviously fulfilled. Condition
(480 can be written in the following equivalent form:

2w (1
lim—- ]  duD, (u.7)[1=P(n)]
7—0 -1
=I(l+1), (I=1,2,...). (51

We substitute Eq(49) into the left-hand side of Eq51)
and consider the limit—0 (note that Ar—1 as r—0).
This yields

(i) [odxe(x) = [odxxip(x) <o,
(i) lim__ 7[7,dxX"¢(x)=0, (n=2,3,...).

Proof. It is sufficient to prove Eq(48¢). Let us write the
left-hand side of Eq(51) as IimHOZ|(7-), where

2 (1
2)="" | dub, (11— Pi()],

and note that

ﬁlduw

Hence, asr— 0, we have

1T

1-u
2—) P(u)=27] dxg(x)P,(1—2x7).
T 0

S dxy(x)[1— P (1—2x7)]
7[5 dxy(x)

as a consequence of conditiofig and (ii). The lemma has

been proven.

The simplest function/(x) satisfying conditiongi) and
(i) is e * or 8(1—x). The corresponding kernels are

)

Z(n)= —2P/(1)=1(1+1),

1-n

Dil)(,u,r)=[4777(1—e1’7)]1ex;< 5

1
D (w,7) = 5—dlu—w(7)],

wherev(7)=1-27 for O<7<1 andv(7)=—1 for 7>1.
These kernels can be used in E4l) to approximate the
Landau-Fokker-Planck equation with an accuracDoAt).
Thus, there is no need to use the complicated exact kernel of
Eq. (43), or even to use the simplified kernel of E@9)
given in Ref.[16]. The simplest choice is, from a practical
point of view, the kerneDf)(,u,r). For this kernel, a ran-
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dom sample of the direction of the postcollisional relative u-n

velocity u’(=un=v’—w’) in Eq. (41) has the following :J - 2dVdenDaB(TvAaBU§> O(V=Vy)

value in the spherical coordinates systéip) with the polar ROXREXS

axis directed to the precollisional relative velocity 6 X S(W—Vg;) 8(V,, 5~ V1),

=arccosy(7) ande=2mxr, wherer is a random number uni-

formly distributed in(0,1). We therefore need only one ran- uj-n At

dom number to simulate the collision. = f 2an0‘:3( )
As already mentioned iRemark 1 a similar simplifica-

tion can be introduced in the scheme for the BoItzmanqN

equation for general long-range forces. This task is, however,

less trivial and we do not discuss it in the present paper. Vi,j =W, +Mguyn, (58)

hereuij =Vyi _VBJ' ,

VIl. ALGORITHM OF PARTICLE COLLISIONS Wij=(M,Vai+mgvg)/(m,+mg), and Mg=mg/(m,
+mg). The second equation of E¢57) can be obtained
using the standard transformation of exchanging precolli-
Ssional velocities for postcollisional ones. Now we sgtv

in Eqg. (57) and evaluate the integral:

We can derive the collision algorithm from E@Gi1). In

{V@1,Va2,-..} is employed in place of the velocity distribu-
tion functionf ,(v,t). The relation betweenf,(v,t) and the

set is in Ref[2] ) ujj -k At

N Qai,ﬁj(v)zszsdkﬁ(k —1)Dyp u_ij, “ﬁu_f}>

Pa
fa(v,t)—N—aizl S(V—V,i), (52) X S(V— Wi — M 4, K),
: - ujj-u’ U3, 2
where N, is the number of samples ang,; is called the =D sl = Aus—3 |M;°Uu;“6(Uu’ —u;),
. . . . S . Bl 2 By3 | T i

velocity of particleai at timet. Similarly, for species3 we i i
write (59

P Ng whereu’ = (v—W;;)/Mg. If we write n’=u’/u’, we have
fﬁ(W.t)=N—Z S(W—Vg;). (53 dv=M3u’?du’'dn’, dn’ being an element of the solid
pI=t angle. From Eq(59), we then have

Substitution of Eqs(52) and(53) into Eq. (41) yields uj; - n’ At , o
N Qai,Bj(V)dV:Daﬁ uj ,Aaﬁu_i:;j o(u —uij)du dan’.
1 1 &
vt A== 3 Qui(v), (54 (60
a al=1
Integration of Q,; 4j(v) over the wholev yields unity;
where Q.i,j(V) is the probability density function.

How to determine the velocity of particlei att+ At is
Ng now clear from Eqgs(55) and(60). First of all, note that the

n
1 - : . .
Q,i(v)= 2 ww(,\,—E Qai,ﬁj(v))’ (55) probability densityQ,;(v) of particle ai does not take the
B=1 Bi=1 form for short-range forces such 3|

u-n At [1=Peo(A)JS(V=V4i) + Peo( A1) Q,i(V),
Qai,ﬂj(v): 3 2denDa,‘B T,AQBUQ‘
RExS where P, (At) is the collision probability of particlexi in
X 5(V;B—Vai)5(W;B—Vm)- (56) time At. The first term represents no collision. Lack of the
first term means that in Coulomb collisior3,,(At) is unity

The functionQ,;(v) in Eq. (54) can be interpreted as the however smallAt is; every particle collides in\t. Second,
probability density function of particlei at timet+ At. note that Eq(55) satisfies
Let us rearrange Ed56). Using

n
fRaQai(V)dV:BZ:l TapPp= 1.
Qui gj(v)= | .dva(v—V1)Qy,i 4(V),

RB

This means that the collision partner of partieleis a par-
we have ticle of speciesB with a probability of,zp5. Let 8 be a
species sampled from the distribution®f zp ;. Third, note
u-n At then that
Qi i (V1) = fR3x R3xsdedenDaﬁ(T'AaﬁF) 1

1
X B(V, 5= Vor) SWL 5= Vgy) SV— V), Nj JeeQetaVNVT (61
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Equation(55) shows that the value of E¢61) represents the defined by Eq(32) does not satisfyr, ;= 74, . The case of
probability that under the condition that particié collides 5+ 7g, is treated in Sec. VIII.

with some particle in species, the collision partner is the There is one more reason for the necessity of symmetrical
specific particleBj. Since Eq.(61) is independent of, all m.p5- FOr a pairwise collision of particleai and gj, the

particlesBl, B2, ... areequally probable as the partner of postcollisional velocities are given by

particleai; we have only to randomly sample a partner from

Ny particles. Letgj be the partner, whose velocity Vg; at Vi (t+At) = Wi +Mpgu;n’, (643

time t. Lastly, the integrand of Eq61), which is given in

Eq. (60), gives the probability that the velocity of particié Vg (t+ A =W;;—M,u;n’. (64b

att+ At is included in volumelv centered at. The velocity .

of particle ai is given by Of course, the same vectcln'r’ must_be useq in bqth Egs.

(649 and(64b). The probability density function af’ in Eq.

Vai(t+ A=W+ Mgu'n’, (64a is D,p in Eq. (60). However, the probability density

function ofn’ in Eq. (64b) is
where Wi =[m,V,;(t) + mgvg (1) 1/(m,+mp), u’=|v,(t)

—vg;(t)|, and the directiom’ of u’ is to be sampled from D, (“ij'n, Ay i;)
the prok|)ability densityD 5 in Eq. (60), whereu;; = |v,;(t) ) 'l

We have described a method to determine the velocity off Ne two probability densities should coincide for a given
one particleai att+At. In the particle simulation of plas- becaus@’ in Eqgs.(648 and(64b) is identical. The condition
mas, the velocities of all particle§al,a2,...,aN,}, Das=Dg.requiresA,;=Agz, and hencer =g, results
{B1,82, ... BNg}, ... should be calculated simultaneously from Eq. (42). The simplest form ofr,; that satisfiesr, s
at each time step. For the sake of simplicity, let us consider 7 g and Eq.(47) is
the plasma consisting of speciesand 8. We have to calcu- N 4
late alla — «, B— B, anda— B collisions in timeAt. Such a 2 _ ¢
case can be treated by modifying the collision algorithm for Tap (,/_1 pV) —cons
one particle. Of course, the simplest method to determine the
particle velocities at+ At is to use the one particle algo- If we replacer, in Eq.(42) by the constant of Eq65), all

rithm for any particle. Using Eq41), one can, in fact, verify  equations hold as they stand. Let us use &) in the
that the resulting momentum and energy of the particle sysfollowing pairwise collision algorithm. Seﬁw:p—l,

tem consisting of all species are conserved when one particle (i) Find randomlyN,,s(=N,pz/p) particles from species
algorithm is used. Since the numbers of simulated particlesy and the same number of particles from speg@asithout
N, andNg, are finite, however, the momentum and energyreplacement. Calculate— 3 collisions of N, pairs. The
show statistical fluctuations around the expectations. T®ostcollisional velocitiesv,,;(t+At) and Vgi(t+At) are
avoid such fluctuations, it is necessary to consider pairwisgiven by Eqs(64a and (64b).

collisions and to satisfy the conservation laws in each colli-  (ji) ChooseN [ = (N,— N,5)/2] pairs randomly without
sion. This is done as follows. Note, however, that the Stl’atrep|acement from the partidesunused in ste(j)_ Calculate
egy of pairwise collisions is based on a physical idea rathep, — « collisions of these pairs.

than on the kinetic equation. Let us count the average num- jjj) ChooseN gg[ = (Nz—N,)/2] pairs randomly with-

bers ofa—a, B— B, anda— B collisions in timeAt. First,  out replacement from the particlgsunused in stegi). Cal-

(65

note that for a binary mixture, E¢32) gives culate 3— B collisions of these pairs.
The collisions are calculated in the order ef- 8, «
NoTaaPat NaTappp=Na, 629  _ g4, andB— B. The order is arbitrary because every patrticle
collides only once in\t. In practical simulations, the Carte-
NpgTgapat Ngmppps=Ng. (62b sian components of postcollisional velocities are necessary.

They can be found in Ref22].
Equation(62a means thalN,, particles of species are di-

vided into two groupsN 7 ,.p, particles collide with par-

. ) ) . . VIIl. WEIGHT ALGORITHM
ticles a and N,m,zp; particles collide with particless.

Similarly, Ngmg,p, in EQ.(62D) is the number of particle8 The choice of Eq(45) is quite natural from the physical
which collide with particlesy. Introduction of the concept of point of view, althoughm ,z# g, . Hence, it is significant
pairwise collisions requires that the number®f B colli- to give the pairwise collision algorithm far , ;# g, . Also,
sions is unique, i.e., the argument concerning this algorithm makes it possible to
treat the case when the weight of a simulated particle de-
NoToppp=NgmTgap, - (63 pends on the species. In multicharged plasmas, electron den-

sity is several times larger than ion density; if we use a larger
The number densities are expressedpgssCN,/V. and  weight for electrons, we can make the number of simulated
pg=CNg/V., whereV, is the cell volume andC is the electrons nearly equal to the number of simulated ions, thus
weight (one simulated particle represer@sreal particles  reducing the computation time.
Substitution ofp, and p; into Eq. (63) yields 7,5= 73, First, we consider the case of equal weights,=Cg
This is a strong condition for the choice of,;. In fact, 7,4 =C. Sincew ,z# 7z, is assumed, Eq63) does not hold for
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a# 3. We consider the case of ;> mg, without loss of  collision of particlea8. The physical time of the whole par-

generality. Let us write ticle system should be advanced by a given time gt
) ) Clearly, this is satisfied if we se¥t=[N,,/(N,,+1)]At,
No=Namappp, Ng=Npgmg.p,- (66) in the functionD,, for oddN,, . For evenN,,, no such a

correction is needed, i.eAt=At,.

Next let us consider the case of different weights,
#Cg. A collision of simulated particles and g represents
collisions ofC,, real particlesx with C 4 real particles. Let us
consider the case &,=5 andCz=3; only three pairwise

, / , collisions can be realized. This can be described through
Uij'n At Uij'n At . . . .
Daﬁ(—!Aaﬁ_B) = ,Ba<—lA,Ba_3) (67) p_robab_|I|ty theory._ Simulated particle undergoe; a colli-
Uij uij Uij u sion with probabilityC z/max(C, ,Cg)[=3/5] and simulated
particle 8 does so with probabilitZ ,/max(C,,Cg)[=1]. We
now calculate mean time increments. Equati(@® take the
form

Clearly,N,, is larger tharN for m,5> g, . Let us modify
step(i) in the algorithm of Sec. VIl as follows. To facilitate
understanding, we consider the caseNjf=7 andN;=3.
First note that

ij

for At =(A.g/Age) At=(mg,/ 7, p)At. This means that if
n’ in Egs. (648 and (64b) is sampled from the probability
density functionD,;, the time incremeniAt in Eq. (64b)
must be replaced bit’. A similar notion was used in Ref. , TapCp ’ T3aCa

[23]. We now consider 7£N) collisions between particles Ne=NaNg— 1 Ng=NN;—F—. (68)

a and 8. However, we have only ST(N/’;) particles of spe- ¢ ¢

cies B. Let (al,a2, ... o7) and (B1,82,83) be sets of ran- Let us consider the case bf, > N;. As in the case ofC,
domly sampled particles, respectively. Noting that 3+ 3 =Cg, we consideiN/, pairwise collisions between particles
+1, we first calculatgal,81), («2,82), and(a3,83) colli- a and B; some particles8 collide twice or more because
sions, next(a4,81’), (a5,82'), and(a6,83") collisions, and N’ >N/,. We useD,,z in Eq. (67) to make a random sample

lastly a(a7,81") collision, where a single prime means the of n’. Then the mean time increment of real particies
second collision and double primes the third collision. Of

course, the precollisional velocity g#1’ is the postcolli-
sional velocity of31, and the precollisional velocity g#1”
is the postcollisional velocity of1’. The mean time incre-
ment of particlesx is trivial, i.e., N, At/N/=At. Since the whereC,Cz/max(C,,Cp) is the number of real particles
total number of collisions idl),, the mean time increment of that have collided in oner— 3 collision of simulated par-
N, particles is NJAt'/Np=N/(7 g,/ ,5) At/N,=At. fucles. Similarly, the mean time increment of real partigtes
Thus, we see that the collision algorithm described results it
the same time increment for speciesand S. c.C 1 C

The treatment oft— « and8— B collisions is the same as At’ N = B
steps(ii) and (i) in Sec. VII. Some remarks are necessary maxC,,Cp) “*NsCps maxC,,Cp)
for the case whel,,(=N,—N.) or Ngg(=Nz—Np) is an

C.Cp 1 o

!

Ataxc, .Cp) N“N;Ca ~ maxC,,Cp)

At, (69a

At, (69b

: whereAt' = (mg,/m,5) At and Eq.(68) were employed. We
odd number. As an example, we consider the cash of see that the collision algorithm results in the same time in-

=5 withN,=12 andN,=7. Let(ala2, ... @l2)be aran- . omant for two species. As before, we have only to choose
dom array of particlesy, where (a8,a9,a10211,a12) are At in the functionD 5 of Eq. (67) as

unused particles in the— 3 collision calculation. We cal-

culate three collisions of paifg8,a9), («¢10,a11), (a12,a8") max C,,Cp)

using the functiorD ,,,, wherea8' denotes the second col- At= C—Atp-

lision of particle 8. The mean time increment of particles b

a is 2AXt3/5, ie., 2At[(N,,t1)/2)/N,,=[(N,., Then the physical time of the system is advanced by a given
+1)/N,.]JAt. This is larger thanit because of the second value At, after all «— g collision calculations.
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