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Theory of collision algorithms for gases and plasmas based on the Boltzmann equation
and the Landau-Fokker-Planck equation
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A time-explicit formula that describes the time evolution of velocity distribution functions of gases and
plasmas is derived from the Boltzmann equation. The formula can be used to construct collision simulation
algorithms. Specialization of the formula to the case of the Coulomb interaction shows that the previous
method@K. Nanbu, Phys. Rev. E55, 4642~1997!# for a Coulomb collision simulation is a solution method of
the Landau-Fokker-Planck equation in the limit of a small time step. Also, a collision simulation algorithm for
multicomponent plasmas is proposed based on the time-explicit formula derived.

PACS number~s!: 02.70.Lq, 52.65.2y, 51.10.1y, 05.10.Gg
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I. INTRODUCTION

It is well known that there are very efficient schemes
the Monte Carlo simulation of collisional processes in r
efied gases with short-range intermolecular forces. Bird@1#
developed the particle simulation method~DSMC! for rar-
efied gases by using the fundamental properties of gases
as the mean free path and the collision frequency. Altho
the method reflects many of the ideas and concepts empl
in the derivation of the Boltzmann equation, it was regard
as a method for numerical experiments. After Bird’s wo
one of the present authors@2# derived a particle simulation
method from the Bolzmann equation and clarified the th
retical background of Bird’s method@3#. A comprehensive
review of rigorous mathematical results on simulation me
ods for the Boltzmann equation can be found in the book
Cercignani, Illner, and Pulvirenti@4#. One can also mention
many alternative numerical methods. For brevity, we re
only to two recently developed methods; one based on
fast Fourier transform@5# and the other based on Wild’
sums@6#. Both methods are very interesting from a theor
ical point of view. However, the practical computational e
ficiency in the case when the methods are applied to spat
inhomogeneous problems still appears to be much lower
the efficiency of the Bird-type schemes. Just for this reas
we here restrict our consideration totraditional Monte Carlo
methods used in kinetic theory.

It is still unclear how to generalize the above methods
the case of long-range forces, in particular, to the Coulo
interaction. In this paper, the long-range forces are define
the particle interaction for which the total collision cross se
tion diverges within the framework of classical mechani
We consider the Boltzmann equation for long-range for
and the Landau-Fokker-Planck equation from a unified po
of view. Numerical methods based on a finite differen
form of the latter equation were studied long ago~see, for
example, Refs.@7# and @8#!. It is very difficult, however, to
apply such methods to spatially inhomogeneous proble
The same is true for methods based on the Langevin e
tion since the computational task increases roughly in p
portion to the square of the number of simulated partic
@9#.
PRE 611063-651X/2000/61~4!/4576~11!/$15.00
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On the other hand, many articles have been published
methods of simulating Coulomb collisions on the basis
intuitive physical considerations. Some authors of the
works attempted to show the consistency of their meth
with the Fokker-Planck equation. We cannot state, howe
that these methods are derived from the Fokker-Planck e
tion. A representative selection of the published papers
referred to here. Takizuka and Abe´ @10# proposed a binary
collision model that mimics the Fokker-Planck operator w
the Landau form. Wanget al. @11# improved Takizuka and
Abé’s method, clarifying the relation between the propos
collision operator and the Fokker-Planck operator of
Landau form. Joneset al. @12# presented a method to calcu
late the force acting on a particle from grid quantities in t
particle-in-cell codes. Their method was improved by Ma
heimer, Lampe, and Joyce@13# who introduced a weake
condition for the velocity distribution function.

In Coulomb collisions, small-angle collisions are mu
more important than collisions resulting in large veloc
changes. It is this idea that Rosenbluth, MacDonald, a
Judd @14# used to derive the Fokker-Planck equation fro
the Boltzmann equation. However, simulating small-an
collisions one by one is computationally inefficient. Cranfi
Brackbill, and Goldman@15# used the idea of grouping man
small-angle collisions and succeeded in using a larger t
step. One of the present authors@16,17# proposed a quite
different formulation on a cumulative property of Coulom
collisions; the nature of his formulation yields a drastic d
crease in computational effort in the particle simulation
Coulomb collisions. However, the unique simulation meth
@16# was proposed on the basis of physical consideratio
without the use of any kinetic equation. Which equation do
this method really solve? This is one of the questions we w
attempt to answer. The aim of the present paper is to pre
a unified treatment of rarefied gases with long-range for
and plasmas on the basis of classical kinetic equations an
construct an efficient Monte Carlo collision algorithm fo
solving the kinetic equations. We should stress that so
ideas of Ref.@16# were a starting point for the present pape

The numerical schemes for kinetic equations are usu
based on the splitting algorithm, namely, the collision p
cess is treated separately from the motion of particles w
4576 © 2000 The American Physical Society
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PRE 61 4577THEORY OF COLLISION ALGORITHMS FOR GASES . . .
out collisions. The problem of the collision process is
solve a spatially homogeneous kinetic equation. Given
goals, it is therefore sufficient to consider only the spatia
homogeneous case.

The paper is organized as follows. In Sec. II we disc
the problem in detail. Then we introduce an important a
proximation to the Boltzmann equations for a simple g
~Sec. III! and mixtures~Sec. IV!. The limiting case of small-
angle scattering ~the Landau-Fokker-Planck equatio
@18,19#! is considered in Sec. V, where a time-explicit k
netic equation for multicomponent plasmas is derived. T
equation having first order accuracy in time step is simila
its Monte Carlo realization to the one used in Ref.@16#.
Some simplified schemes are constructed in Sec. VI, wh
we also show that the scheme of Ref.@16# is really a method
of solving the Landau-Fokker-Planck equation and that
scheme can be significantly simplified. In Sec. VII we der
a collision algorithm for mixtures using the formulation
Sec. V. A weight alogrithm is described in Sec. VIII, whic
is useful in simulating multicharged plasmas.

II. STATEMENT OF THE PROBLEM

Let f (v,t) be a distribution function satisfying the sp
tially homogeneous Boltzmann equation:

] f

]t
5E

R33S2
dwdngS u,

u•n

u D @ f ~v8! f ~w8!2 f ~v! f ~w!#,

~1!

where v is the particle velocity,t is the time, R3 is
3-dimensional Euclidean space,S2 is a unit sphere inR3, u
5v2w, u5uuu, nPS2, i.e., unu51, and

v85
1

2
~v1w1un!, w85

1

2
~v1w2un!,

~2!
g~u,cosu!5us~u,u!, ~0<u<p!.

Here cosu5u•n/u and s(u,u) is the differential collision
cross section at the scattering angleu. The argumentt is
omitted in the distribution functions in Eq.~1!.

We introduce also usual notations for integral cross s
tions

s tot52pE
0

p

dus~u,u!sinu,

~3!

s tr~u!52pE
0

p

dus~u,u!sinu~12cosu!,

and note thats tot5pRmax
2 for intermolecular potentials with a

finite radiusRmax of action. For example,Rmax5d for hard
spheres of diameterd. We distinguish two alternative case
~i! short-range potentials (Rmax,`) and ~ii ! long-range po-
tentials (Rmax5`). In the first case we can rewrite Eq.~1! as

] f

]t
5I 12I 2, I 25 f ~v!s totE

R3
dwf ~w!uv2wu, ~4!

and define a typical time intervalt0 between two successiv
collisions ~relaxation time! by
r
y

s
-
s

is
n

re

is

c-

1

t0
5s totK E

R3
dwf ~w!uv2wu L , ~5!

where the averagê̄ & over v may be obtained by using th
corresponding Maxwellian distribution. Equation~5! is, in a
sense, a key point of any sort of DSMC method for Eq.~1!.
In DSMC methods we simulate binary collisions, keeping
mind that roughly speaking, the total number of collisions
a given time interval corresponds to Eq.~5!. The methods
obviously fail if Rmax5` ~long-range potentials! since t0
50 in Eq. ~5!, and therefore the number of collisions
infinitely large in any given time interval.

On the other hand, the initial data problem for Eq.~1! is
well posed for a certain class of potentials withRmax5`;
typical examples areV(r )}1/r n(n.1) or V(r )}e2ar /r , a
being a constant. In such cases,I 2 in Eq. ~4! loses its mean-
ing although a typical relaxation time is still well define
say, as

1

t1
5K E

R3
dwf ~w!us tr~u!L ~6!

with u5uv2wu. The physical reason for the solvability o
Eq. ~1! for long-range potentials is now very clear: An infi
nite number of small-angle collisions yields a finite cont
bution in the relaxation process. How can we simulate t
process by DSMC methods? The simplest method is to
troduce a radial cutoff of the potentialV(r ) @or angular cut-
off of the cross sections(u,u) at a small angle#. We thus
obtain an approximate form of Eq.~4! with a very larges tot
but we can use the standard DSMC method for Eq.~4!. This
approach is, however, rather inefficient since we need
choose the time stepDt which satisfies the conditionDt
,t05O(s tot

21), whereas the true relaxation timet1 of Eq. ~6!
satisfies the inequalityt1@t0 . Another method to avoid the
divergence ofs tot is to regards(u,u) as isotropic, i.e., in-
dependent ofu. This results in the variable hard-sphe
model@20#. This model is very successful from the enginee
ing point of view, but some arbitrariness remains when
termining the constant in the model; one may use viscosc
thermal conductivity, or self-diffusion coefficients.

All these considerations remain valid also for the Landa
Fokker-Planck equation for plasmas@18,19#, which is simply
an asymptotic form of the Boltzmann equation~1! for the
Debye potentialV(r )}e2ar /r in the limit of a→0.

We now ask: How can we construct an efficient DSM
method for long-range potentials? We attempt to constru
method satisfying the following minimal requirements.

~a! The computational task should be proportional to t
number of simulated particles.

~b! The time step of ordert1 of Eq. ~6!, not t0 of Eq. ~5!,
should be allowed.

~c! The simulation method should be similar in realizati
to some of the existing DSMC methods for the Boltzma
equation.

~d! The method should be generalizable to the Land
Fokker-Planck equation and to multicomponent gases
plasmas.

Of course, requirement~c! is not always necessary but
is very convenient in practical use. We now derive t
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4578 PRE 61A. V. BOBYLEV AND K. NANBU
DSMC method satisfying all the above requirements. Thi
the main purpose of the present paper. First we explain a
idea in the following section.

III. FIRST ORDER EQUATION

We consider the Boltzmann equation~1! and rewrite it in
the following form:

] f

]t
5E

R3
dwJF~U,u!, ~7!

where U5(v1w)/2 denotes the center-of-mass velocity,u
5v2w is the relative velocity, and

F~U,u![ f S U1
u

2D f S U2
u

2D5 f ~v! f ~w!. ~8!

The operatorJ acts only on the angular variablev5u/u in
such a way that

JF~U,uv!5E
S2

dng~u,v•n!@F~U,un!2F~U,uv!#.

~9!

We note thatU andu play only the role of constant param
eters in Eq.~9!; one can define the action of the operatorJ on
arbitrary functionc(v) by

Jc~v!5E
S2

dng~v•n!@c~n!2c~v!#, ~10!

where we omitted the irrelevant argumentu in the scattering
indicatrix g(u,v•n). Let us approximate the time derivativ
and the operatorJ in Eq. ~7! by

] f ~v,t !

]t
.

f ~v,t1Dt !2 f ~v,t !

Dt
, J.

1

«
@exp~«J!2 Î #,

~11!

whereÎ is the identity operator, andDt and« are assumed to
be sufficiently small. Then the approximate equation read

f ~v,t1Dt !2 f ~v,t !5
Dt

« E
R3

dw@exp~«J!2 Î #F~U,u!.

~12!

Let us write

«5rDt, r5E
R3

dvf ~v,t !5const, ~13!

wherer is the number density. Then we obtain the appro
mate equation

f ~v,t1Dt !5
1

r ER3
dw exp~rDtJ!F~U,u!

5
1

r ER3
dw exp~rDtJ! f ~v,t ! f ~w,t !. ~14!

This equation approximates the Boltzmann equation~7!
within an accuracy ofO(Dt), so that it is not formally worse
is
ey

as

-

than any other first order~in Dt! approximation of Eq.~1!.
The reason why this equation is useful for long-range pot
tials is that the exponential operator exp(tJ) has much better
properties than the operatorJ itself. We shall see this below

The operatorJ in Eq. ~10! is well known in linear trans-
port theory@21#. To construct the operator exp(tJ), it is suf-
ficient to solve the initial value problem forc(v,t) as

]c

]t
5Jc, c~v,0!5c0~v!, ~vPS2!, ~15!

for arbitraryc0(v). We assume

ic0iL2~S2!

2
5E

S2
dvc0

2~v!,`,

then we have

c0~v!5(
l 50

`

(
m52 l

l

c lm
~0!Ylm~v!,

c lm
~0!5E

S2
dvc0~v!Ylm* ~v!,

whereYlm(v) are the spherical function andYlm* (v) is its
complex conjugate. Using the additional theorem for t
spherical function, we can easily prove

JYlm52l lYlm , l l52pE
21

1

dmg~m!@12Pl~m!#.

~16!

Therefore, the solution of Eq.~15! reads as

c~v,t!5(
l 50

`

(
m52 l

l

c lm
~0! exp~2l lt!Ylm~v!.

It is more convenient to express the solution in the followi
integral form:

c~v,t!5exp~tJ!c0~v!5E
S2

dnG~v•n,t!c0~n!,

~17!

where

G~m,t!5(
l 50

`
2l 11

4p
exp~2l lt!Pl~m!, ~21<m<1!,

~18!

andPl(m) is the Legendre polynomial. We note that

lim
t→01

G~m,t!5
1

2p
d~12m!. ~19!

A remark is here necessary: It follows from Eq.~16! that

lim
l→`

l l52pE
21

1

dmg~m!5us tot , ~20!

provided thatg(m)@[g(u,m)# is given by Eq.~2!. There-
fore g(u,m) is nonintegrable inmP(21,1) for long-range
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PRE 61 4579THEORY OF COLLISION ALGORITHMS FOR GASES . . .
potentials, whereas the functionG(m,t), whose parametert
is irrelevant, is even square integrable in this interval in ty
cal cases. In this sense, it was mentioned above that exptJ)
has better mathematical properties thanJ ~true, however,
only for positivet!.

Let us now present the first order equation~14! in a time-
explicit form. Using Eqs.~17! and ~18! we obtain

f ~v,t1Dt !5
1

r ER33S2
dwdnGS u•n

u
,u,rDt D f ~v8,t ! f ~w8,t !,

~21!

where F(U,un)5 f (v8,t) f (w8,t) is used. The kerne
G(m,u,t) is given by

G~m,u,t!5(
l 50

`
2l 11

4p
Pl~m!exp@2l l~u!t#, ~22!

l l~u!52pE
21

1

dmg~u,m!@12Pl~m!#. ~23!

We note that for a fixedrDt the right-hand side of Eq.~21!
coincides formally with the gain~positive! term of the colli-
sion integral in Eq. ~1!, having a collisional kerne
G(m,u,rDt). The functionG(•) is non-negative; it is the
Green function of Eq.~10!, and moreover

E
S2

dnG~v•n,u,rDt !51. ~24!

Therefore, the first order equation~21! guarantees positivity
of f (v,t1Dt) for f (v,t)>0 and fulfillment of all classical
conservation laws. It is now clear that the Nanbu-Babov
particle method@4# can be used for simulation of Eq.~21!
with almost no changes. It is remarkable that Eq.~21! corre-
sponds to theconstant collision frequency. That is, colli-
sional pairs in numerical realization can be chosen random
so that the realization is very simple.

For the sake of generality, we also present the form of
~21! for the case of short-range forces. Since

lim
l→`

l l~u!5us tot,`,

Eq. ~23! can be transformed into the following form:

G~m,u,t!5
1

2p
d~12m!exp~2us tott!

1@12exp~2us tott!#R~m,u,t!,

where

R~m,u,t!5(
l 50

`
2l 11

4p
Pl~m!

exp@gl~u!t#21

exp@us tott#21
, ~25!

and

gl~u!52pE
21

1

dmg~u,m!Pl~m!.

The corresponding transformation of Eq.~21! yields
-

y

y,

.

f ~v,t1Dt !5
1

r ER3
dwH f ~v,t ! f ~w,t !exp~2us totrDt !

1@12exp~2us totrDt !#

3E
S2

dnRS u•n

u
,u,rDt D f ~v8t ! f ~w8,t !J .

~26!

It is easy to show thatR(m,u,t)>0 and

2pE
21

1

dmR~m,u,t!51. ~27!

The probabilistic meaning of Eq.~26! is obvious: The colli-
sion between particles with velocitiesv andw occurs with a
probability of Pcol(Dt)512exp(2ustotrDt), and the post-
collisional velocities are distributed in accordance with in
catrix R(m,u,rDt). @Note thatR5(4p)21 for a hard-sphere
molecule.# The simulation method for short-range forc
based on Eq.~26! has some advantages compared with
standard scheme@4#; in practical realization of collision
simulations, we do not need to introduce an uncertain qu
tity such as the maximum relative speed. It is also suffici
to decide whether a collision occurs or not by using the pr
ability Pcol(Dt) for each random collision pair with veloci
ties (v,w). The price we need to pay for this simplification
the calculation of the functionR(m,u,t) for a given inter-
molecular potential. However, this function has to be cal
lated only once; moreover,R is unity in the practically most
important case of a hard sphere. Our main concern in
paper is the long-range forces, and hence, we now leave
short-range forces.

In the next section we generalize the methodology to
case of mixtures.

IV. EQUATIONS FOR MIXTURES

We consider ann-component mixture of rarefied gase
We denote the distribution function of speciesa by f a(v,t).
The reduced mass fora2b collision is

mab5mamb /~ma1mb! ~a,b51,2, . . . ,n!. ~28!

Let sab(u,u) be the corresponding differential cross sectio
u standing for relative speed. Then the Boltzmann equati
can be written in a form similar to Eqs.~7!–~9!:

] f a~v,t !

]t
5 (

b51

n E
R3

dwJabFab~Uab ,u!, ~29!

whereu5v2w, Uab5(mav1mbw)/(ma1mb), and

Fab~Uab ,u!5 f aS Uab1
mab

ma
uD f bS Uab2

mab

ma
uD

5 f a~v! f b~w!,

JabFab~Uab ,u!5E
S2

dngabS u,
u•n

u D @Fab~Uab ,un!

2Fab~Uab ,u!#, ~30!
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4580 PRE 61A. V. BOBYLEV AND K. NANBU
with gab(u,cosu)5usab(u,u).
It is obvious that one can easily repeat all steps of Sec

and obtain an equation similar to Eq.~21!. It is, however,
convenient to take into account the fact that a typical co
sion time,tab , depends strongly on the species of collidi
particles. We therefore introduce

ḡab52pE
21

1

dmgab~^uab&,m!~12m!, ~31!

where^uab& is a typical relative speed between particles
speciesa andb. Now we rewrite Eq.~29! as

] f a

]t
5 (

b51

n

ḡabE
R3

dwĴabFab , Ĵab5
1

ḡab
Jab .

We again use the approximations

] f a

]t
.

f a~v,t1Dt !2 f a~v,t !

Dt
, Ĵab.

1

«a
@exp~«aĴab!2 Î #,

and put

«a5Dt (
g51

n

ḡagrg, rg5E
R3

dvf g~v,t !5const.

This yields

f a~v,t1Dt !5 (
b51

n

pabE
R3

dw@exp~«aĴab!# f a~v,t ! f b~w,t !,

where

pab5ḡabS (
g51

n

ḡagrgD 21

, (
b51

n

pabrb51. ~32!

Finally, we express the operator exponentials in a tim
explicit form analogous to Eq.~21! and obtain

f a~v,t1Dt !5 (
b51

n

pabE
R33S2

dwdnGabS u•n

u
,u,

Dt

pab
D

3 f a~vab8 ,t ! f b~wab8 ,t !, ~33!

whereu5v2w and

vab8 5
mav1mbw

ma1mb
1

mab

ma
un, wab8 5

mav1mbw

ma1mb
2

mab

mb
un,

~34!

Gab~m,u,t!5(
l 50

`
2l 11

4p
Pl~m!

3expH 22ptE
21

1

dmgab~u,m!

3@12Pl~m!#J . ~35!
II

-

f

-

In case of a simple gas, Eq.~33! reduces to Eq.~21!. All
arguments at the end of Sec. III can be obviously generali
to the case of mixtures. As will be shown later, arbitrarine
in the choice of^uab& in Eq. ~31! plays no essential role
because nothing in Eq.~33! depends on̂uab& ~throughpab!
for small Dt.

V. SMALL-ANGLE SCATTERING AND COULOMB
INTERACTION

We first consider Eq.~21! for a simple gas and assum
that the scattering cross sections(u,u) is concentrated a
small angles nearu50. This means that the indicatri
g(u,m) of Eq. ~2! is concentrated nearm51. We can thus
formally approximate the integral in Eq.~23! as

l l~u!.2pE
21

1

dmg~u,m!@12Pl~1!1~12m!Pl8~1!#

5p l ~ l 11!E
21

1

dmg~u,m!~12m!, ~36!

wherePl8(1)5 l ( l 11)/2 is used. This yields the approxima
expression of the Green functionG(m,u,t) of Eq. ~22!:

G~m,u,t!.G~L !~m,u,t!

5(
l 50

`
2l 11

4p
Pl~m!expF2

l ~ l 11!

2
us tr~u!tG ,

~37!

where s tr(u) is defined by Eq.~3!. The superscript in
G(L)(•) means that Eq.~21! with the kernel replaced byG(L)

approximates the Landau-Fokker-Planck equation@18,19#,

] f

]t
5

1

8

]

]v i
E

R3
dwus tr~u!~u2d i j 2uiuj !

3S ]

]v j
2

]

]wj
D f ~v! f ~w!. ~38!

For a formal proof of this statement it is enough to note t

expF t

2

]

]ui
us tr~u!~u2d i j 2uiuj !

]

]uj
Gc~u!

5E
S2

dnG~L !S u•n

u
,u,t Dc~un!, ~39!

and repeat all steps in Sec. III for Eq.~38!. The procedure
can be immediately generalized to mixtures: We need o
replaceGab in Eq. ~33! by Gab

(L) , which is given by Eq.~37!
after replacings tr(u) by

sab
tr ~u!52pE

0

p

dusab~u,u!sinu~12cosu!. ~40!

Let us now consider the most important case of the C
lomb potential,
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Vab~r !5
qaqb

4pe0r
, ~a,b51,2, . . . ,n!

where r is the distance between two particles with charg
qa andqb , ande0 is the permittivity of free space. By th
use of the Rutherford formula

sab~u,u!5S qaqb

4pe0mabu2D 2

~12cosu!22,

the integral of Eq.~40! with angle cutoff atu5uab
min results in

sab
tr ~u!.4pS qaqb

4pe0mabu2D 2

ln Lab ,

where the standard approximation

U lnS sin
uab

min

2 DU. ln Lab5const

is used. The Coulomb logarithm lnLab is defined in the
usual way. The scattering angleu is given by tan(u/2)
5uqaqbu/4pe0mabu2b, whereb is the impact parameter. Se
u5uab

min at u25^uab
2 & andb5lD , wherelD is chosen to be

the Debye length independent of species and^uab
2 & is the

average ofu2 for a2b collisions. Then we have

Lab5
4pe0mab^uab

2 &lD

uqaqbu
.

We choosê uab
2 & as

^uab
2 &5

3kTa

ma
1

3kTb

mb
1~^va&2^vb&!2.

This value was evaluated by assuming the Maxwellian d
tributions for speciesa and b, where Ta and Tb are the
temperatures, and̂va& and^vb& are the flow velocities. Note
that Lab5Lba . If Ta5Tb5T and ^va&5^vb&, then^uab

2 &
53kT/mab and hence,Lab512pe0lDkT/uqaqbu. In the
case ofuqau5uqbu5e, this Lab is the constant independen
of species. For the sake of simplicity, here we set the lnLab
constant for anya andb and insertLab5L. However, the
extension to the case when lnL depends on species
straightforward.

We now formulate the final results for multicompone
plasma. The time evolution of speciesa is described in the
time-explicit form

f a~v,t1Dt !5 (
b51

n

pabE
R33S2

dwdnDab

3S u•n

u
,Aab

Dt

u3 D f a~vab8 ,t ! f b~wab8 ,t !,

~41!

whereu5v2w, vab8 andwab8 are defined by Eq.~34!, and

pab5F (
g51

n

rg

^uab&3mab
2 qg

2

^uag&3mag
2 qb

2 G21

,

s

-

Aab5
2p

pab
S qaqb

4pe0mab
D 2

ln L, ~42!

Dab~m,t!5(
l 50

`
2l 11

4p
Pl~m!exp@2 l ~ l 11!t#. ~43!

The simplest estimate of^uab& can be obtained by assumin
an equilibrium plasma with temperatureT:

^uab&5~8kT/pmab!1/2, ~44!

k being the Boltzmann constant. By use of Eq.~44!, the final
form of pab reads as

pab5F (
g51

n

rg

qg
2

qb
2 Amab

mag
G21

. ~45!

In the simplest case of charge-neutral hydrogen plasma
sisting of electrons (a5e) and protons (a5 i ), we obtain

re5r i~5r!, mii 5
mi

2
, mee5

me

2
, mie5mei.me ,

qi
25qe

2~5e2!, p i i
215rS 11

1

g D , p ie
215r~11g!,

pee
215rS 11

1

&
D , pei

215r~11& !, g25
2me

mi
,

Aii 58prS 11
1

g D e4

mi
2 ln L, Aie52pr~11g!

e4

me
2 ln L,

Aee58prS 11
1

&
D e4

mi
2 ln L, Aei52pr~11& !

e4

me
2 ln L.

~46!

These equations give all coefficients in Eq.~41! for a5 i or
e. It should be noted, however, that any other reasona
choice ofpab satisfying the conditions

(
b51

n

pabrb51, ~a51,2, . . . ,n!, ~47!

is also allowable.

VI. SIMPLIFIED SCHEMES AND COMPARISON WITH
THE PREVIOUS APPROACH

In this section, we discuss a possible way of simplifyi
Eq. ~43!. A disadvantage of the numerical scheme based
Eqs. ~41!–~43! is that the probability density function
D(m,t) is rather complicated~suffix ab is omitted!. At each
time step one needs to obtain a random sample of the q
tity m(t) distributed in@21,1#. It is therefore desirable to
deal with a simpler functionD* (m,t) approximating Eq.
~43!. For this purpose, we first note that Eq.~41! is correct
only with an accuracy ofO(Dt), as is clear from its deriva-
tion. Hence, the function~43! can be replaced by any othe
function D* (m,t) satisfying the following conditions:
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~a! D* ~m,t!>0, 2pE
21

1

dmD* ~m,t!51, ~48a!

~b! lim
t→0

D* ~m,t!5
1

2p
d~12m!, ~48b!

~c! lim
t→0

2p

t E
21

1

dm@D* ~m,t!2D~m,t!#Pl~m!50.

~48c!

Equation~48c! must hold for alll 51,2, . . . . Webegin with
two remarks.

Remark 1. Replacing the kernel by its first order approx
mation is allowable not only in Eq.~41! for plasmas but also
in Eq. ~33! for general long-range forces, provided that co
ditions ~48a!–~48c! are satisfied by replacingD(m,t) by
Gab(m,u,t) andD* (m,t) by Gab* (m,u,t), which is an ap-
proximation ofGab(m,u,t). As we stressed in the Introduc
tion, the starting point for the present paper is the meth
proposed in Ref.@16# on the basis of intuitive physical con
siderations. We are now able to show that the approac
Ref. @16# is really the solution method of the Landau-Fokke
Planck equation in the limit ofDt→0. Roughly speaking, the
previous method@16# is equivalent to a numerical realizatio
of the Markov process of Eq.~41! ~we ignore an irrelevan
choice of pab and some other details!, where D(m,t) is
approximated by the function

D* ~m,t!5
A

4p sinhA
exp~mA!, ~49!

with A5A(t) satisfying the equation

cothA2
1

A
5e2t. ~50!

Remark 2. To completely clarify the comparison with Re
@16#, it should be noted that the functionD* (cosxN ,s/2)
corresponds tof (xN) for fixed parameters in the notations
of Ref. @16#. It is sufficient for our purpose to show tha
function ~49! does satisfy conditions~48a!–~48c!. The limit
t→0 corresponds to the limitA→`; moreover, A(t)
.(2t)21 as t→0 in accordance with Eq.~50!. Therefore,
conditions~48a! and~48b! are obviously fulfilled. Condition
~48c! can be written in the following equivalent form:

lim
t→0

2p

t E
21

1

dmD* ~m,t!@12Pl~m!#

5 l ~ l 11!, ~ l 51,2, . . .!. ~51!

We substitute Eq.~49! into the left-hand side of Eq.~51!
and consider the limitt→0 ~note that 2At→1 as t→0!.
This yields
-

d

of

1

2t2 E
21

1

dm@12Pl~m!#expS 2
12m

2t D
5

1

t E0

1/t

dxe2x@12Pl~122xt!#

. lim
t→0

2Pl8~1!E
0

1/t

dxxe2x

52Pl8~1!5 l ~ l 11!.

Hence, all conditions~48a!–~48c! are fulfilled. Therefore,
the scheme presented in Ref.@16# approximates the Landau
Fokker-Planck equation. Let us further develop our idea.
approximateD(m,t) we need not always solve Eq.~50! for
A(t); it is enough if only condition~48c! is satisfied. To do
this one can use the following simple lemma.

Lemma. Conditions~48a!–~48c! are fulfilled for any func-
tion

D* ~m,t!5cS 12m

2t D F4ptE
0

1/t

dxc~x!G21

,

wherec(x) satisfiesc(x)>0 for x.0 and
~i! *0

`dxc(x)5*0
`dxxc(x),`,

~ii ! lim
t→0

t*1/t
` dxxnc(x)50, (n52,3, . . . ).

Proof. It is sufficient to prove Eq.~48c!. Let us write the
left-hand side of Eq.~51! as lim

t→0
Zl(t), where

Zl~t!5
2p

t E
21

1

dmD* ~m,t!@12Pl~m!#,

and note that

E
21

1

dmcS 12m

2t D Pl~m!52tE
0

1/t

dxc~x!Pl~122xt!.

Hence, ast→0, we have

Zl~t!5
*0

1/tdxc~x!@12Pl~122xt!#

t*0
1/tdxc~x!

→2Pl8~1!5 l ~ l 11!,

as a consequence of conditions~i! and ~ii !. The lemma has
been proven.

The simplest functionc(x) satisfying conditions~i! and
~ii ! is e2x or d(12x). The corresponding kernels are

D
*
~1!~m,t!5@4pt~12e21/t!#21 expS 2

12m

2t D ,

D
*
~2!~m,t!5

1

2p
d@m2n~t!#,

wheren(t)5122t for 0<t<1 andn(t)521 for t.1.
These kernels can be used in Eq.~41! to approximate the
Landau-Fokker-Planck equation with an accuracy ofO(Dt).
Thus, there is no need to use the complicated exact kern
Eq. ~43!, or even to use the simplified kernel of Eq.~49!
given in Ref.@16#. The simplest choice is, from a practic
point of view, the kernelD (2)(m,t). For this kernel, a ran-
*
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dom sample of the directionn of the postcollisional relative
velocity u8(5un5v82w8) in Eq. ~41! has the following
value in the spherical coordinates system~u,w! with the polar
axis directed to the precollisional relative velocityu: u
5arccosn(t) andw52pr , wherer is a random number uni
formly distributed in~0,1!. We therefore need only one ran
dom number to simulate the collision.

As already mentioned inRemark 1, a similar simplifica-
tion can be introduced in the scheme for the Boltzma
equation for general long-range forces. This task is, howe
less trivial and we do not discuss it in the present paper

VII. ALGORITHM OF PARTICLE COLLISIONS

We can derive the collision algorithm from Eq.~41!. In
the Monte Carlo simulation a set of random samp
$va1 ,va2 ,...% is employed in place of the velocity distribu
tion function f a(v,t). The relation betweenf a(v,t) and the
set is in Ref.@2#

f a~v,t !5
ra

Na
(
i 51

Na

d~v2va i !, ~52!

where Na is the number of samples andva i is called the
velocity of particlea i at time t. Similarly, for speciesb we
write

f b~w,t !5
rb

Nb
(
j 51

Nb

d~w2vb j !. ~53!

Substitution of Eqs.~52! and ~53! into Eq. ~41! yields

1

ra
f a~v,t1Dt !5

1

Na
(
i 51

Na

Qa i~v!, ~54!

where

Qa i~v!5 (
b51

n

pabrbS 1

Nb
(
j 51

Nb

Qa i ,b j~v!D , ~55!

Qa i ,b j~v!5E
R33S2

dwdnDabS u•n

u
,Aab

Dt

u3 D
3d~vab8 2va i !d~wab8 2vb j !. ~56!

The functionQa i(v) in Eq. ~54! can be interpreted as th
probability density function of particlea i at time t1Dt.

Let us rearrange Eq.~56!. Using

Qa i ,b j~v1!5E
R3

dvd~v2v1!Qa i ,b j~v!,

we have

Qa i ,b j~v1!5E
R33R33S2

dvdwdnDabS u•n

u
,Aab

Dt

u3 D
3d~vab8 2va i !d~wab8 2vb j !d~v2v1!,
n
r,

s

5E
R33R33S2

dvdwdnDabS u•n

u
,Aab

Dt

u3 D d~v2va i !

3d~w2vb j !d~vab8 2v1!,

5E
S2

dnDabS ui j •n

ui j
,Aab

Dt

ui j
3 D d~v12vi j8 !, ~57!

whereui j 5va i2vb j ,

vi j8 5W i j 1Mbui j n , ~58!

W i j 5(mava i1mbvb j )/(ma1mb), and Mb5mb /(ma
1mb). The second equation of Eq.~57! can be obtained
using the standard transformation of exchanging preco
sional velocities for postcollisional ones. Now we setv15v
in Eq. ~57! and evaluate the integral:

Qa i ,b j~v!52E
R3

dkd~k221!DabS ui j •k

ui j
,Aab

Dt

ui j
3 D

3d~v2W i j 2Mbui j k!,

5DabS ui j •u8

ui j
2 ,Aab

Dt

ui j
3 D Mb

23ui j
22d~u82ui j !,

~59!

whereu85(v2W i j )/Mb . If we write n85u8/u8, we have
dv5Mb

3u82du8dn8, dn8 being an element of the solid
angle. From Eq.~59!, we then have

Qa i ,b j~v!dv5DabS ui j •n8

ui j
,Aab

Dt

ui j
3 D d~u82ui j !du8dn8.

~60!

Integration of Qa i ,b j (v) over the wholev yields unity;
Qa i ,b j (v) is the probability density function.

How to determine the velocity of particlea i at t1Dt is
now clear from Eqs.~55! and~60!. First of all, note that the
probability densityQa i(v) of particle a i does not take the
form for short-range forces such as@2#

@12Pcol~Dt !#d~v2va i !1Pcol~Dt !Qa i~v!,

wherePcol(Dt) is the collision probability of particlea i in
time Dt. The first term represents no collision. Lack of th
first term means that in Coulomb collisions,Pcol(Dt) is unity
however smallDt is; every particle collides inDt. Second,
note that Eq.~55! satisfies

E
R3

Qa i~v!dv5 (
b51

n

pabrb51.

This means that the collision partner of particlea i is a par-
ticle of speciesb with a probability ofpabrb . Let b be a
species sampled from the distribution ofpabrb . Third, note
then that

1

Nb
E

R2
Qa i ,b j~v!dv5

1

Nb
. ~61!
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Equation~55! shows that the value of Eq.~61! represents the
probability that under the condition that particlea i collides
with some particle in speciesb, the collision partner is the
specific particleb j . Since Eq.~61! is independent ofj, all
particlesb1, b2, . . . areequally probable as the partner
particlea i ; we have only to randomly sample a partner fro
Nb particles. Letb j be the partner, whose velocity isvb j at
time t. Lastly, the integrand of Eq.~61!, which is given in
Eq. ~60!, gives the probability that the velocity of particlea i
at t1Dt is included in volumedv centered atv. The velocity
of particlea i is given by

va i~ t1Dt !5W i j 1Mbu8n8,

where W i j 5@mava i(t)1mbvb j (t)#/(ma1mb), u85uva i(t)
2vb j (t)u, and the directionn8 of u8 is to be sampled from
the probability densityDab in Eq. ~60!, whereui j 5uva i(t)
2vb j (t)u.

We have described a method to determine the velocity
one particlea i at t1Dt. In the particle simulation of plas
mas, the velocities of all particles$a1,a2, . . . ,aNa%,
$b1,b2, . . . ,bNb%, . . . should be calculated simultaneous
at each time step. For the sake of simplicity, let us cons
the plasma consisting of speciesa andb. We have to calcu-
late alla2a, b2b, anda2b collisions in timeDt. Such a
case can be treated by modifying the collision algorithm
one particle. Of course, the simplest method to determine
particle velocities att1Dt is to use the one particle algo
rithm for any particle. Using Eq.~41!, one can, in fact, verify
that the resulting momentum and energy of the particle s
tem consisting of all species are conserved when one par
algorithm is used. Since the numbers of simulated partic
Na andNb , are finite, however, the momentum and ener
show statistical fluctuations around the expectations.
avoid such fluctuations, it is necessary to consider pairw
collisions and to satisfy the conservation laws in each co
sion. This is done as follows. Note, however, that the st
egy of pairwise collisions is based on a physical idea rat
than on the kinetic equation. Let us count the average n
bers ofa2a, b2b, anda2b collisions in timeDt. First,
note that for a binary mixture, Eq.~32! gives

Napaara1Napabrb5Na , ~62a!

Nbpbara1Nbpbbrb5Nb . ~62b!

Equation~62a! means thatNa particles of speciesa are di-
vided into two groups:Napaara particles collide with par-
ticles a and Napabrb particles collide with particlesb.
Similarly, Nbpbara in Eq. ~62b! is the number of particlesb
which collide with particlesa. Introduction of the concept o
pairwise collisions requires that the number ofa2b colli-
sions is unique, i.e.,

Napabrb5Nbpbara . ~63!

The number densities are expressed asra5CNa /Vc and
rb5CNb /Vc , where Vc is the cell volume andC is the
weight ~one simulated particle representsC real particles!.
Substitution ofra and rb into Eq. ~63! yields pab5pba .
This is a strong condition for the choice ofpab . In fact,pab
f

r

r
e

s-
le
s,
y
o
e

i-
t-
r
-

defined by Eq.~32! does not satisfypab5pba . The case of
pabÞpba is treated in Sec. VIII.

There is one more reason for the necessity of symmetr
pab . For a pairwise collision of particlesa i and b j , the
postcollisional velocities are given by

va i~ t1Dt !5W i j 1Mbui j n8, ~64a!

vb j~ t1Dt !5W i j 2Maui j n8. ~64b!

Of course, the same vectorn8 must be used in both Eqs
~64a! and~64b!. The probability density function ofn8 in Eq.
~64a! is Dab in Eq. ~60!. However, the probability density
function of n8 in Eq. ~64b! is

DbaS ui j •n8

ui j
,Aba

Dt

ui j
3 D .

The two probability densities should coincide for a givenDt
becausen8 in Eqs.~64a! and~64b! is identical. The condition
Dab5Dba requiresAab5Aba and hence,pab5pba results
from Eq. ~42!. The simplest form ofpab that satisfiespab
5pba and Eq.~47! is

pab5S (
g51

n

rgD 21

5const ~65!

If we replacepab in Eq. ~42! by the constant of Eq.~65!, all
equations hold as they stand. Let us use Eq.~65! in the
following pairwise collision algorithm. Setpab5r21.

~i! Find randomlyNab([Narb /r) particles from species
a and the same number of particles from speciesb without
replacement. Calculatea2b collisions of Nab pairs. The
postcollisional velocitiesva i(t1Dt) and vb j (t1Dt) are
given by Eqs.~64a! and ~64b!.

~ii ! ChooseNaa@5(Na2Nab)/2# pairs randomly without
replacement from the particlesa unused in step~i!. Calculate
a2a collisions of these pairs.

~iii ! ChooseNbb@5(Nb2Nab)/2# pairs randomly with-
out replacement from the particlesb unused in step~i!. Cal-
culateb2b collisions of these pairs.

The collisions are calculated in the order ofa2b, a
2a, andb2b. The order is arbitrary because every partic
collides only once inDt. In practical simulations, the Carte
sian components of postcollisional velocities are necess
They can be found in Ref.@22#.

VIII. WEIGHT ALGORITHM

The choice of Eq.~45! is quite natural from the physica
point of view, althoughpabÞpba . Hence, it is significant
to give the pairwise collision algorithm forpabÞpba . Also,
the argument concerning this algorithm makes it possible
treat the case when the weight of a simulated particle
pends on the species. In multicharged plasmas, electron
sity is several times larger than ion density; if we use a lar
weight for electrons, we can make the number of simula
electrons nearly equal to the number of simulated ions, t
reducing the computation time.

First, we consider the case of equal weights,Ca5Cb
5C. SincepabÞpba is assumed, Eq.~63! does not hold for
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aÞb. We consider the case ofpab.pba without loss of
generality. Let us write

Na85Napabrb , Nb85Nbpbara . ~66!

Clearly,Na8 is larger thanNb8 for pab.pba . Let us modify
step~i! in the algorithm of Sec. VII as follows. To facilitat
understanding, we consider the case ofNa857 andNb853.
First note that

DabS ui j •n8

ui j
,Aab

Dt

ui j
3 D 5DbaS ui j •n8

ui j
,Aba

Dt8

ui j
3 D ~67!

for Dt85(Aab /Aba)Dt5(pba /pab)Dt. This means that if
n8 in Eqs. ~64a! and ~64b! is sampled from the probability
density functionDab , the time incrementDt in Eq. ~64b!
must be replaced byDt8. A similar notion was used in Ref
@23#. We now consider 7(5Na8 ) collisions between particle
a andb. However, we have only 3(5Nb8 ) particles of spe-
cies b. Let ~a1,a2, . . . ,a7! and ~b1,b2,b3! be sets of ran-
domly sampled particles, respectively. Noting that 75313
11, we first calculate~a1,b1!, ~a2,b2!, and ~a3,b3! colli-
sions, next~a4,b18!, ~a5,b28!, and ~a6,b38! collisions, and
lastly a ~a7,b19! collision, where a single prime means th
second collision and double primes the third collision.
course, the precollisional velocity ofb18 is the postcolli-
sional velocity ofb1, and the precollisional velocity ofb19
is the postcollisional velocity ofb18. The mean time incre-
ment of particlesa is trivial, i.e., Na8Dt/Na85Dt. Since the
total number of collisions isNa8 , the mean time increment o
Nb8 particles is Na8Dt8/Nb85Na8 (pba /pab)Dt/Nb85Dt.
Thus, we see that the collision algorithm described result
the same time increment for speciesa andb.

The treatment ofa2a andb2b collisions is the same a
steps~ii ! and ~iii ! in Sec. VII. Some remarks are necessa
for the case whenNaa(5Na2Na8 ) or Nbb(5Nb2Nb8 ) is an
odd number. As an example, we consider the case ofNaa

55 with Na512 andNa857. Let ~a1,a2, . . . ,a12! be a ran-
dom array of particlesa, where ~a8,a9,a10,a11,a12! are
unused particles in thea2b collision calculation. We cal-
culate three collisions of pairs~a8,a9!, ~a10,a11!, ~a12,a88!
using the functionDaa , wherea88 denotes the second co
lision of particlea8. The mean time increment of particle
a is 2D3t3/5, i.e., 2Dt@(Naa11)/2#/Naa5@(Naa
11)/Naa#Dt. This is larger thanDt because of the secon
-

h.
f

in

collision of particlea8. The physical time of the whole par
ticle system should be advanced by a given time stepDtp .
Clearly, this is satisfied if we setDt5@Naa /(Naa11)#Dtp
in the functionDaa for odd Naa . For evenNaa , no such a
correction is needed, i.e.,Dt5Dtp .

Next let us consider the case of different weights,Ca
ÞCb . A collision of simulated particlesa andb represents
collisions ofCa real particlesa with Cb real particles. Let us
consider the case ofCa55 andCb53; only three pairwise
collisions can be realized. This can be described thro
probability theory: Simulated particlea undergoes a colli-
sion with probabilityCb /max(Ca ,Cb)@53/5# and simulated
particleb does so with probabilityCa /max(Ca ,Cb)@51#. We
now calculate mean time increments. Equations~66! take the
form

Na85NaNb

pabCb

Vc
, Nb85NaNb

pbaCa

Vc
. ~68!

Let us consider the case ofNa8.Nb8 . As in the case ofCa

5Cb , we considerNa8 pairwise collisions between particle
a and b; some particlesb collide twice or more becaus
Na8.Nb8 . We useDab in Eq. ~67! to make a random sampl
of n8. Then the mean time increment of real particlesa is

Dt
CaCb

max~Ca ,Cb!
Na8

1

Na8Ca
5

Cb

max~Ca ,Cb!
Dt, ~69a!

whereCaCb /max(Ca ,Cb) is the number of real particlesa
that have collided in onea2b collision of simulated par-
ticles. Similarly, the mean time increment of real particlesb
is

Dt8
CbCa

max~Ca ,Cb!
Na8

1

Nb8Cb
5

Cb

max~Ca ,Cb!
Dt, ~69b!

whereDt85(pba /pab)Dt and Eq.~68! were employed. We
see that the collision algorithm results in the same time
crement for two species. As before, we have only to cho
Dt in the functionDab of Eq. ~67! as

Dt5
max~Ca ,Cb!

Cb
Dtp .

Then the physical time of the system is advanced by a gi
valueDtp after all a2b collision calculations.
l.

ys.
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